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Goal

This vignette focuses on illustrating the use of different functions in the lamme package in a realistic scenario.
The lamme package includes function related to log-analytic methods for multiplicative effects. For example,
the Logged ANCOVA (LANCOVA) has the full model as

Yij = µ∗θjX
β
ijεij

where µ∗ is the geometric mean of the posttest score, X denotes the pretest scores, β denotes the power
parameter that describes the potentially nonlinear relationship between pretest and posttest scores, θj is the
ratio effect of group j with respect to the grand mean, and ε is the multiplicative error term.

We utilize an open dataset by Schoene et al. (2015). We first describe the data, then explain the motivation
for using lamme, and show how different functions in lamme can be applied and interpreted.

In addition, we show how power calculation and sample size planning for LANOVA and LANCOVA can be
done through lamme.

Data description

A randomized pretest-posttest design was used to investigate the effects of interactive cognitive-motor step
training on cognitive risk factors for falling in older adults. The experimental treatment for the intervention
group (n = 39) consisted of four games all combining physical stepping and mental tasks, while the control
group (n = 42) received brochures about healthy lifestyle and instructions to continue their normal routine
but no cognitive or physical training.

For example, one mental task is the letter-digit test where the participants were asked to match digits and
numbers as quickly as possible. One of the outcome measures for this task was simple hand reaction time in
ms. The same measure was also obtained at baseline prior to training. For demonstration, we selected hand
reaction time as the variable to focus on for our analyses.

• group: a categorical variable denoting if the individual is from the treatment or control group
• pre_HRT: prettest hand reaction time
• post_HRT: posttest hand reaction time

We first load the data and obtain basic summary statistics.
library(lamme)
data("schoene")
attach(schoene)
summary(schoene)

## group pre_HRT post_HRT
## control :42 Min. :172.8 Min. :175.8
## treatment:39 1st Qu.:227.3 1st Qu.:214.3
## Median :257.0 Median :237.4
## Mean :260.3 Mean :243.9
## 3rd Qu.:287.7 3rd Qu.:264.4
## Max. :432.8 Max. :360.4
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c('sd_pre'=sd(pre_HRT),'sd_post'=sd(post_HRT))

## sd_pre sd_post
## 44.53229 40.00070

To view the data information, ??schoene can be used.

Motivation

Theoretical Motivation

Because reaction time differs drastically across people as evidenced in the standard deviation of the pretest
hand reaction time, it would make sense that the intervention may result in larger decreases in reaction time
for those with higher pretest scores than for those with lower pretest scores.

Empirical Diagnostic

Having established a theoretical reason for testing multiplicative effects, we now hope to obtain more support
from empirical diagnostics. Here, we apply the abc function in order to do AIC comparison with modified
Box-Cox (ABC) procedure. Using the ABC procedure, as opposed to simply comparing the multiplicative
and additive models, is important because the model fit statistics are only comparable across models in the
ABC procedure. More information about abc can be obtained through ?abc. When pretest scores are input
into the abc function, the ABC procedure compares LANCOVA, ANCOVA, ANCOHET, and ANCOVA with
log-transformed y by default.
abc(post_HRT,group,pre_HRT)

## $ancova
## [1] 759.9898
##
## $ancohet
## [1] 761.6763
##
## $`ancova-l`
## [1] 746.6123
##
## $lancova
## [1] 743.1558

Based on the AIC values, all other models received less support than the LANCOVA model (AIC = 743.156,
∆AIC > 2 compared to all other compared models). For illustrative purpose, imagine that no pretest scores
were collected. in this case, we use abc(post_HRT,group), the AIC value for ANOVA and LANOVA models
are respectively 830.5177347, 819.9362036: the LANOVA model received considerably more support than the
ANOVA model.

Data Analysis

To test and estimate the multiplicative effects of the experimental treatment on the hand reaction time. We
use the function lancova.
lancova(post_HRT,group,pre_HRT)
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##
## Call:
## lm(formula = (log(y) ~ log(x) + factor(g)))
##
## Residuals:
## Min 1Q Median 3Q Max
## 0.7474 0.9404 0.9858 1.0541 1.3438
##
## Coefficients:
## Estimate (log-scale) s.e. t value Pr(>|t|)
## (Intercept) 4.056e+00 3.631e-01 3.856e+00 2.353e-04
## x 7.400e-01 6.533e-02 1.133e+01 3.811e-18
## factor(g)treatment 9.563e-01 2.129e-02 -2.098e+00 3.919e-02
## 2.5 % 97.5 %
## (Intercept) 1.969e+00 8.358
## x 6.099e-01 0.870
## factor(g)treatment 9.166e-01 0.998
##
## Residual standard error: 0.09569 on 78 degrees of freedom
## Multiple R-squared: 0.6327, Adjusted R-squared: 0.6233
## F-statistic: 67.19 on 2 and 78 DF, p-value: < 2.2e-16

The experimental treatment shows a significant multiplicative effect, ζ = .96, 95% CI= (.917, .998). That is,
the ratio between the effects of the treatment and the control group is θ̂treatment

θ̂control
= 96%. This means that

compared with the control group, the treatment group was 4% faster in terms of the hand reaction time,
which indicates improved general processing with transfers to complex unlearned tasks that require high
levels of attention.

We now move on to interpret other parameter estimates from the output. In the intercept row, the estimate
is of the control group posttest (geometric) mean. In the x row, the estimate is of the power relationship
parameter β. Here we can see that the pretest scores also significantly predicts the posttest scores, p < .05.
Note that the standard errors are from the logged model. In terms of overall model significance, we see that
F (2, 78) = 67.19, p < .05. We can also calculate the overall model effect size, R2

1−R2 = .6327
1−.6327 = 1.72.

Moreover, boostrapped effect size measures can be obtained via boot.es. Note that boot.es follows
bootstrapping procedures and should show performance expected of the respective procedure. However, the
exact performance of the boostrapping procedures is still under evaluation. As such, the users should use
boot.es with caution. Currently, boot.es output the bias-corrected and accelerated boostrap confidence
interval and the expanded percentile confidence interval.
boot.es(post_HRT,group,pre_HRT)

## BCa LL BCa UL exp perc LL exp perc UL
## control 1.7637691 7.6932353 1.8166624 8.0827484
## treatment 0.9168768 0.9936230 0.9182317 0.9971055
## x 0.6226879 0.8912955 0.6126674 0.8855343
## sig2nois ratio 0.8532688 2.7157354 0.9694566 2.9830523

We see that the the boostrap confidence interval for the ζtreatment is comparable to that from exponentiated
CI from the logged model, which is included in the lancova output. Moreover, a confidence interval for the
overall effect size is shown here in the sig2nois ratio row, e.g., 95% BCa CI= 0.84, 2.71.

For illustrative purpose, suppose that pretest scores are not available. In this case, we use the function
lanova. Note that for both lanova and lancova, argument plot can be set at True, which would give
post-hoc diagnostic plots.
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par(mfrow=c(2,2))
lanova(post_HRT,group)

##
## Call:
## lm(formula = (log(y) ~ factor(g)))
##
## Residuals:
## Min 1Q Median 3Q Max
## 0.7498 0.8936 0.9903 1.0931 1.5362
##
## Coefficients:
## Estimate (log-scale) s.e. t value Pr(>|t|)
## (Intercept) 2.471e+02 2.386e-02 2.309e+02 1.481e-113
## factor(g)treatment 9.489e-01 3.439e-02 -1.526e+00 1.309e-01
## 2.5 % 97.5 %
## (Intercept) 2.356e+02 259.122
## factor(g)treatment 8.861e-01 1.016
##
## Residual standard error: 0.1546 on 79 degrees of freedom
## Multiple R-squared: 0.02864, Adjusted R-squared: 0.01635
## F-statistic: 2.33 on 1 and 79 DF, p-value: 0.1309

Power Calculation and Sample Size Planning

lamme package can also be used for power calculation and sample size planning. For power calculation, we
use pwr.lanova and pwr.lancova respectively for LANOVA and LANCOVA.
# power in three-group LANOVA with per-group sample size of 40 given small population
# effect
pwr.lanova(3,40,.01,.05)

## $`the number of group`
## [1] 3
##
## $`the per-group sample size`
## [1] 40
##
## $`r squared`
## [1] 0.01
##
## $`significance level`
## [1] 0.05
##
## $power
## [1] 0.1469077
# power in three-group LANCOVA with per-group sample size of 40 and pretest-posttest
# correlation of .5 given small population effect
pwr.lancova(3,40,.01,.5,.05)

## $`the number of group`
## [1] 3
##
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## $`the per-group sample size`
## [1] 40
##
## $`pretest-posttest correlation`
## [1] 0.5
##
## $`r squared`
## [1] 0.01
##
## $`significance level`
## [1] 0.05
##
## $power
## [1] 0.2557666

For sample size planning, we use ss.lanova and ss.lancova respectively for LANOVA and LANCOVA.
# sample size planning in three-group LANOVA with desired power of .8 and
# significance level of .05 given assumed small population effect
ss.lanova(3,.01,.8,.05)

## $`the number of group`
## [1] 3
##
## $`proportion of variance to be explained`
## [1] 0.01
##
## $`significance level`
## [1] 0.05
##
## $`desired power`
## [1] 0.8
##
## $`the per-group sample size requirement`
## [1] 325.401
# sample size planning in three-group LANOVA with desired power of .8 and
# significance level of .05 and pretest-posttest correlation of .5 given
# assumed small population effect
ss.lancova(3,.01,.5,.8,.05)

## $`the number of group`
## [1] 3
##
## $`pretest-posttest correlation`
## [1] 0.01
##
## $`proportion of variance to be explained`
## [1] 0.5
##
## $`significance level`
## [1] 0.05
##
## $`desired power`
## [1] 0.8
##
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## $`the per-group sample size requirement`
## [1] 13.79446
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